How to cite information resources and create a reference list?
(ISO 690:2010)

Rimanta Kerbelienė

KTU Library
1. Ethical use of information sources
2. Methods of citation
3. Presentation of references
4. Examples of bibliographic references
5. Bibliographic reference tools
According to the Law of the Republic of Lithuania on Copyright and Related Rights (1999):

Quote - means a relatively short passage cited from another work to demonstrate or to make more intelligible author’s own statements, or to refer to the views or thoughts of another author in authentic wording.

Quotation - shall be permissible, without the authorisation of the author or any other owner of copyright, to reproduce a relatively short passage of a published work or a work made available to the public, both in the original and translated language, in the form of a quotation in another work, provided that such reproduction is compatible with fair practice and its extent does not exceed that justified by the purpose.
The main reasons for citing

- It is important to uphold honor and ethics. To avoid plagiarism, it is necessary to provide bibliographic references to the cited sources.
- Citing allows the reader of your work to locate cited documents and check the facts or to look into the details of the cited information.
- Failure to cite sources may be considered plagiarism and be penalized.

All ideas and facts that are obtained from other sources must be properly cited, unless they qualify as common knowledge.
Plagiarism

Is the act of using the work of another and passing it off as one's own with or without their consent, by incorporating it into your work without full acknowledgement.

Self-plagiarism

Is the reuse of one's own previously written work in another piece of work without including reference to the previous use.

Without proper citation, your work could be construed as plagiarism.
Prevention

• Consult with your instructor
• Plan your paper
• Take notes

• Using special programs to check for plagiarism: EPAS, CrossCheck.
• Storing research publications on open access repositories (Lithuanian Academic E-library) that check for plagiarism automatically.
Cite sources

<table>
<thead>
<tr>
<th>Directly Quoting</th>
<th>Summarizing</th>
<th>Paraphrasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be identical to the original, using a narrow segment of the source.</td>
<td>Involves putting the main ideas into your own words, including only the main points.</td>
<td>Is to include the ideas or information from an original source in your paper by rephrasing those ideas or information in your own words.</td>
</tr>
</tbody>
</table>
A citation style is a set of guidelines, that outlines how the information is ordered, as well as punctuation and other formatting.

There are many different ways of citing resources. The citation style could depend on the academic discipline involved.

For example:

• APA (American Psychological Association) is common to the Education, Psychology, and Social Sciences.
• MLA (Modern Language Association) style is most often used in the Arts and the Humanities.
• Chicago style is most widely used in History and Economics.
Students writing qualifying papers (bachelor, master thesis) should follow supervisor, department or faculty instructions.*

*In the absence of instructions on the rules of bibliographic references, International Standard LST ISO 690:2010 is recommended.

General recommendations:
- American Psychological Association (APA) style is for social sciences works;
- **LST ISO 690:2010** - for papers from physical and technology science.
There are 2 methods, in preparing citations and reference lists according to LST ISO 690:2010 standard:

- **Name and date system (Harvard system)**
- **Numeric system**
Citation in text:
• Numerals in the text, in parentheses, brackets or superscript, refer to information resources in the order in which they are first cited.
• Later citations of a specific information resource receive the same number as the first.

Examples:
1. This theory was first put forward in 1987 (1).
2. Several recent studies have suggested that....(2, 3).
3. Scholtz (4) has argued that...
Citation in text:
• If specific parts of an information resource are cited, page numbers may be given after the numerals.

Example:
...end of the line for my research (3 p. 56).

• The references to the information resources should be arranged in their numerical order in a numbered list.

2.
The elements, in order, to be included in references

Name of creator(s) (of the cited item):
- BACH, C.P.E.
- GORDON, Dexter and Philippe SAGNAC.
- BONEBRAKE, T., C.L. BOGGS, C.A. DEUTSCH, and P.R. EHRLICH.
- FITTING, Hans and others (et al.)
- ROYAL SOCIETY

Note: Standard ISO 690:2010 recommends putting authors in capitals.
Title of the item – the data used in a reference should, if possible, be taken from the cited information resource itself. **Subtitles** should be included if they furnish essential information about the content of an information resource, otherwise they may be omitted.

Example:

Note: *Use italics for the title.*
Edition - only include the edition number if it is not the first.

Place of publication, Publisher, Year of publication.

Pages:
- if quoting a specific section include the pages where the quote occurs;
- insert the abbreviation pp. before the page numbers (p. if a single page).

Note: in references to books this element may be omitted.

Standard identifier (ISBN, ISSN) - required if available.
Presentation of references (4)

Additional main information for online information resources

[Online] - in square brackets;
[Accessed] - in square brackets with the date you viewed it - (you may also use [viewed]);
Availability - this information should be identified by the words “Available from” and it should include the network address for its location (e.g. URL, DOI).
AUTHOR SURNAME, First Name or Initials. *Title*. Edition (if not the 1st). Place: Publisher, Year of Publication. Standard identifier.

If there is no author (the work is anonymous), begin the reference with the title of the book:

Dynamic reliability and uncertainty analysis of a severe accident with randomly delayed events

R. Alzbutas
Lietuvos Energetikos institutas, Lithuania
Kauno Technologijos Universitetas, Lithuania

P.E. Labeau
Université Libre de Bruxelles, Belgium

ABSTRACT: The Stimulus-Driven Theory of Probabilistic Dynamics (SDTPD) and its simplified version have been introduced for the analytical modeling and the simulation of hybrid (continuous-discrete) systems with delayed events as well as for dynamic reliability considerations. An approach of non-Markovian simulation and uncertainty analysis is discussed in order to adapt SDTPD for practical applications. This developed approach and related methods for uncertainty analysis have been used as a basis for test case simulation in the perspective of its applications for severe accident scenario analysis. Finally, it is concluded that modeling of stimulated dynamics as well as uncertainty and sensitivity analysis allow the detailed simulation of complex system characteristics and representation of their uncertainty. The developed approach of analysis for hybrid systems with delayed events can be efficiently used to estimate the reliability of complex systems and at the same time to analyze the uncertainty of this estimate.

1 INTRODUCTION OF ISSUES CONSIDERED

1.1 Markov process and dynamic system issues

The large part of commonly used methods for reliability analysis and probabilistic safety assessment (PSA) are usually based on the assumption, that the basic events are functionally independent of each other. This assumption does not often hold, and Markov processes are mainly used to account for time dependency of the reliability and availability functions.

In this case, it is possible to use an assumption that the transfers from state to state follow a Markov process. The initial equations to be considered may be expressed as follows:

\[
\begin{align*}
\frac{dx_j(t)}{dt} & = -\lambda_j x_j(t) + \phi_j(t); \\
\lambda_j & = \sum_{i \to j} P_{ij}; \quad \phi_j(t) = \sum_{i \to j} \phi_i(t); \\
\end{align*}
\]

where \(j \) is the system state vector, composed of the set of system states, \(\sigma_j \) is the probability of the system being in state \(j \) at time \(t \) and \(P_{ij} \) is the transition rate from state \(i \) to state \(j \). The term \(\phi_j(t) \), as defined in (1), is called the ingoing density, i.e., the instantaneous frequency at which state \(j \) is entered from any other state at time \(t \).

In general, each state characterization can be associated specific laws of dynamics with specified evolution equations and possible delays. The terms of the evolution equations and delays for each state in this case depend only on the state itself, on the possible states immediately preceding and following the one under consideration, and on the rates of transfer between these states.

However, even these simpler equations may not be solvable with analytical form, if the rates of transition between states are time-dependent functions. The analysis is even more complex, if transition rates are uncertain, i.e. depend on uncertain parameters.

Due to the strong dependence existing along an accident scenario between stochastic events (e.g. operator errors or component failures) and dynamics or time-dependent states of physical processes (e.g. change of temperature), the traditional simulation using Markov process is not capable to cope with such dependent hybrid system simulation. The reliability analysis of the system is even more complex, if transition rates are uncertain, i.e. depend on uncertain parameters. Thus, extended approaches are considered in order to cope with this issue and the uncertainty analysis.
AUTHOR(S) SURNAME, First Name or Initials. Article Title. Journal Title. Volume number (Part or Issue or Month), Year of Publication, Page Number(s). Standard identifier.

Or without the use of the volume or pagination labels:

AUTHOR SURNAME, First Name or Initials. or ORGANISATION NAME. *Title of page* [online]. Year of page creation or last updated. Organisation [viewed date]. Available from: web address.

Take the information from the website itself or the associated homepage:

EDITOR(S) SURNAME, First Name or Initials., ed. *Title of conference proceedings*. Location of conference, Date of conference. Place of publication: Publisher.

AUTHOR SURNAME, First Name or Initials. Title. Qualification, Awarding institution. Year of Publication.

APPLICANT/CREATOR Surname, First Name or Initials. Title of patent. Inventor: Surname, First Name or Initials. Date awarded. Application Date. Patent Number.

Patents may be awarded to a company or an individual therefore you may occasionally see an inventor in addition to the company who have applied for or owns the patent.

Reference management software helps you to keep track of your research, create bibliographies or reference lists and share these with others.

Paid (subscribed at the moment):
- RefWorks, http://www.refworks.com
- EndNoteWeb, http://myendnoteweb.com(registerfromtheuniversitycomputernetwork)

Free of charge:
- Zotero, http://www.zotero.org
Where to find help?
http://ktu.edu/en/library

Training

Developing information literacy skills to make the most of our rich information environment at the University is not only important to you whilst you are studying at the University, it is also vital for your future employability and career progression. Being able to demonstrate your familiarity with using databases widely used within your intended industry/profession will be highly valued by potential employers.

It is important that you develop an understanding of the information resources available to you, learn how to use them effectively and most importantly how to evaluate the content they provide. We offer training in a group or one-on-one training to ensure that you are able to make the most of our resources. We also help you to develop your study skills by offering courses on how to evaluate information sources and references correctly and avoid plagiarism.

Training Sessions at KTU Library

How to find information resources for your master thesis/course paper? (Technological and physical sciences)

Kada: kovo 3 d., kt., 15.00 – 15.45
Kur: Studentų g. 56, Kaunas 51424, Lietuva (žemėlapis)

Aplūdintasis: Faculty of Mechanical Engineering and Design Library (studentų St. 56 - 435 a.), tel. 353 817, biblioteka ka.mid@ktu.lt

daugiau informacijos, kopijuoti i mano kalendorių
How to cite information resources and create a reference list?

(ISO 690:2010)

rimanta.kerbeliene@ktu.lt