Measurable impact on improving lives through learning
Agenda

• Overview of Pearson & Products.
• Digital offerings and how they work.
• Short Demonstration
The world’s leading learning company

Pearson $7,339m
43,000 people across 70 countries serving millions of learners
Higher Education Learning Services

We create and deliver personalised learning solutions and services that improve educational outcomes.
Key Departments

- Biology
- Business
- Chemistry
- Computer Science
- Engineering
- Maths
- Physics
- Economics
Trusted Content
A leading content provider for over 100 years

MyLab and Mastering homework & assessment
9 million registered users

eBooks
Integrate with most devices and institutional learning platforms

Personalised print and online resources
Over 400 custom publications used in European universities
Pearson in Higher Education: Our reach and impact

- Hundreds of the world’s leading authors, including Nobel Prize winners, cabinet officials and experts in every field partner with us

- Global best selling titles and authors

- Over 12 million student registrations to digital products

- Over 500 Global Edition titles adapted by subject matter experts
Our bestselling textbooks
Students prefer custom resources with digital resources
MyLab™ & Mastering™

Suite of online homework, tutorial and assessment systems that complement classroom activity

- Customizable content
- Practice exercises and homework
- Rich media and interactive tutorials
- Personalized study plans made possible by real-time assessments
- Integrates with most LMS
- Integrated grade book
- Can be used with a textbook or eText
Trusted Content: MyLab and Mastering
Measuring learning and improving results

Fig. 3: Comparison between mean coursework, MCQ, exam and total module marks between 2007-2010
Training

1. Consultation phase
 To understand what you want to achieve and help you come up with a way to measure success

2. Engagement phase
 To identify a framework to measure success, a timeline for implementation and a service plan

3. Technical implementation phase
 To implement the solution onto your platform or devices

4. Training phase
 To equip you with the skills and knowledge to achieve your goals via professional training delivered by our team of experienced service managers and educators

5. Evaluation phase
 To help you evaluate the success of the solution

Allow 12 weeks
Learning Catalytics

Mastering and Learning Catalytics combine to provide a highly effective learning experience both inside and outside the classroom!

![Diagram of Mastering: Learning Full Circle]

- **Pre-lecture Assignments**
- **Homework, Quizzing, and Testing**
- **Learning Catalytics, Mastering Media**
- **DURING CLASS**
- **BEFORE CLASS**

- Readings, questions, videos, pre-built assignments
- Formative assessment, peer instruction, team-based assessment

Fully Integrated

- Available in all Mastering disciplines for all titles.
- Signing in to Mastering provides direct access to Learning Catalytics for both instructors and students.
- Learning Catalytics matches the instructor's Mastering course - same course name and discipline.
- When the instructor chooses to use Learning Catalytics with their students, the course and roster are synced to the Learning Catalytics system.
All Courses in one place

Engage students effectively with immersive content, tools, and
Easy for students
Dynamic Study Modules

Dynamic Study Modules use a patented, brain-science based methodology that encourages authentic knowledge acquisition and promotes accurate, long-term recall of key course concepts.

- Confidence metrics core to platform
- Content in manageable chunks for faster learning
- Forces independent recall of concepts
- Mastery of Concepts Required
- Science Throughout Application
- Study Entirely on Mobile App
BEFORE CLASS
Interactive Pre-lecture Videos

See an Interactive Pre-lecture video
Multimedia Assets to Assist Student’s Learning

Chapter 3. A Consumer's Constrained Choice

Application
- Buying an SUV in the United States vs. Europe
- Do Taxes Affect Click-versus-Brick Decisions?
- Substitution Effects in Canada

Student Lecture Notes
- Chapter 3 Student Lecture Notes

Solved Problem
- Solved Problem 1

Supplemental Material
- Additional Details on the Food Stamp Experiments Application

Chapter 4. Demand

Animation
- Figure 4.2
- Figure 4.5
- Figure 4.7

Student Lecture Notes
- Chapter 4 Student Lecture Notes

Application
- Booze Sin Taxes
- Condoms
- Demanding Rail Safety
- Gasoline Taxes as a Revenue Source
- Incidence of Federal Ad Valorem Taxes
- Incidence of Tax on Restaurant Meals
- Specific Taxes
- What to Do with Extra Income
- Why the Wealthy Buy More Houses

Supplemental Material
- Arc Elasticities

Chapter 5. Consumer Welfare and Policy Analysis

Animation
- Figure 5.11

Application
- Bruce Springsteen’s Gift to His Fans
- Christmas Price Index
- Compensating Variation for Television
- Income Elasticities of Demand for Cars
- International Comparison of Substitution and Income Effects
- Leisure-Income Choices of Textile Workers
- Quality Improvements, New Products, and the CPI
Virtual Brain

Visual Brain is an interactive virtual brain designed to help students better understand neuroanatomy, physiology, and human behavior. Thirteen interactive brain modules bring to life many of the most difficult topics typically covered in the biopsychology course. Now assignable with highlighted learning objectives and thorough assessment, this hands-on experience engages students and makes course content and terminology accessible.
Personalized Study with help and hints to tutor students as well as Adaptive Learning
AFTER CLASS

Adaptive Follow-Ups

Watch and learn about Adaptive Follow-Ups
Free-Body Diagrams and Newton’s Laws

When solving problems involving forces and Newton’s laws, the following summary of things to do will assist your mind thinking about getting involved in the problem at hand:

1. Define the problem.
2. Identify all forces acting on the object.
3. Apply the equations of motion to solve for unknowns.

Problem Solving: Free-Body Diagrams and Newton’s Laws

1. Draw a sketch of the situation.
2. Consider only one object (at a time), and draw a free-body diagram for that object, showing all forces acting on the object. Do not include forces that the object exerts on other objects. If several objects are involved, draw a free-body diagram for each body separately. Show all forces acting on that body.
3. Newton’s second law involves vectors, and it is necessary to resolve vectors into components. Choose an x and y axis in a way that simplifies the calculation.
4. For each vector force, identify its vector and its magnitude and angle. Use the coordinate axes to resolve the vector force into its x and y components. The x and y components of the net force on an object will be related to the x and y components of that body’s acceleration.
5. Apply the equation for the unknowns.

Apply these steps:

Use the steps outlined above to find the magnitude of the acceleration a of a chair and the magnitude of the normal force F_N acting on the chair. Yves pushes a chair of mass m = 55 kg across a carpeted floor with a force F_g. The subscript g here is based on the fact that the chair is moving due to the carpet and the chair is F_g = 100 N.

Part A

Identify and sketch all external forces acting on the chair. The chair can be represented as a point particle of mass m. Draw the forces with their tails centered on the black dot in the middle of the chair. Be careful to draw your forces so that they have the correct orientation.

Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded.
A bring-your-own-device classroom response system

• Founded by Eric Mazur, a guru in peer instruction, and enables peer instruction
• 18 different question types including open-ended questions to develop critical thinking skills
• Gradebook gives lecturers insight into individual and course level performance
• Lecturers write their own questions, use Pearson’s bank, or the community bank
• Allows lecturers to flip the classroom
• Avoids the administrative load of using physical clickers
Manage student interactions with intelligent grouping and timing.

Automatically create groups for peer instruction based on student response patterns, to optimize discussion productivity.

Let the system manage the timing of questions so that the class is paced appropriately.
Any Device

MyEconLab
Sample Question 1

The table shows the demand and supply schedules for bread.

Excellent weather in wheat growing areas increases the quantity supplied by 45 loaves a day at each price.

At the initial equilibrium price, there is a _____ of bread. The price of a loaf _____ and the quantity of loaves demanded _____ as the market moves to its new equilibrium.

<table>
<thead>
<tr>
<th>Price (dollars per loaf)</th>
<th>Quantity demanded (loaves per day)</th>
<th>Quantity supplied (loaves per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>200</td>
<td>110</td>
</tr>
<tr>
<td>1.85</td>
<td>175</td>
<td>130</td>
</tr>
<tr>
<td>2.20</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2.55</td>
<td>125</td>
<td>170</td>
</tr>
<tr>
<td>2.80</td>
<td>100</td>
<td>190</td>
</tr>
</tbody>
</table>

Click to select your answer, then click Check Answer.

1 past remaining
Christine Lindstrøm

Associate Professor, Faculty of Education and International Studies, Oslo and Akershus University College

http://vimeo.com/79884334
Technical Support
24/7

• For you
• For your students
• Whenever you need it

http://247pearsoned.custhelp.com